EFFECTS OF OIL POLLUTION IN THE MARINE ENVIRONMENT

M. Annie Devadharshini, LLM, Department of Human Rights and Duties Education, School of Excellence in Law, Tamilnadu Dr. Ambedkar Law University

ABSTRACT

Oil pollution remains one of the most critical threats to marine ecosystems, with far-reaching ecological, economic, and social consequences. This paper explores the causes, history, and impacts of oil spills on marine environments, highlighting the vulnerability of organisms such as seabirds, mammals, fish, corals, and mangroves. It examines mechanisms of damage including smothering, chemical toxicity, and habitat disruption, as well as the resilience and natural recovery capacity of ecosystems. Case studies of major spills, such as the Torrey Canyon, Exxon Valdez, and Deepwater Horizon, illustrate both immediate and long-term consequences. The international legal framework, including conventions under the International Maritime Organization (MARPOL, CLC, FUND, and OPRC), provides mechanisms for prevention, liability, and compensation, though enforcement challenges remain. The study emphasizes the importance of sustainable industrial practices, technological innovation in spill response, ecosystem monitoring, and public awareness to mitigate future risks. Ultimately, strengthening international cooperation and adopting proactive measures are essential to protecting marine biodiversity, ensuring recovery of affected ecosystems, and safeguarding coastal livelihoods.

Keywords: Oil Pollution, Marine Environment, Oil Spills, Ecosystem Damage, Biodiversity, Recovery, MARPOL, International Maritime Organization, Environmental Law, Coastal Communities, Sustainable Practices, Spill Response, Marine Biodiversity, Polycyclic Aromatic Hydrocarbons (PAHs), Restoration.

Page: 6574

INTRODUCTION:

Oil spills can cause a wide range of impacts in the marine environment and are often portrayed by the media as "environmental disasters" with dire consequences predicted for the survival of marine flora and fauna¹. In a major incident the short-term environmental impact can be severe, causing serious distress to ecosystems and to the people living near the contaminated coastline, affecting their livelihoods and impairing their quality of life². The oiled birds in the marine, a spill encourage the perception of widespread and permanent environmental damage with the inevitable loss of marine resources³. Given the highly charged and emotional reaction usually associated with oil spills, it can be difficult to obtain a balanced view of the realities of spill effects and subsequent recovery.

Oil pollution in the marine environment has become one of the most significant and persistent challenges facing the world's oceans today⁴. The term "oil pollution" refers to the introduction of petroleum-based substances into the sea, which can be caused by a range of human activities, both accidental and deliberate⁵. Oil spills, discharges from ships, offshore drilling operations, and runoff from land-based sources all contribute to this ongoing environmental crisis⁶.

One of the most visible and immediate consequences of oil pollution is the impact on marine organisms, particularly those that inhabit the surface layers of the ocean. Sea birds, marine mammals, and other species that rely on the ocean's surface for feeding and nesting can be directly affected by oil exposure. Birds, for example, may become coated with oil, which impairs their ability to fly, dive, and regulate body temperature. Similarly, marine mammals may ingest oil or become contaminated when they come into contact with polluted waters, leading to internal injuries, organ damage and even death⁷.

Consequently, the effects of oil pollution are sufficiently well understood to allow for broad indications of the scale and duration of damages for a given incident. A scientific

¹ International Maritime Organization (IMO), "Oil Pollution," IMO, 2020.

² United Nations Environment Programme (UNEP), "Oil Spill Impacts and Response," UNEP, 2021.

³ National Oceanic and Atmospheric Administration (NOAA), "Effects of Oil on Wildlife," NOAA, 2022.

⁴ World Wildlife Fund (WWF), "The Impact of Oil Pollution on Oceans," WWF, 2020.

⁵ United Nations Convention on the Law of the Sea (UNCLOS), "Marine Pollution: Causes and Effects," UNCLOS, 2019.

⁶ International Maritime Organization (IMO), "Global Overview of Oil Spill Sources," IMO, 2021.

⁷ Marine Mammal Center, "Impact of Oil Spills on Marine Mammals," Marine Mammal Center, 2021.

appraisal of typical oil spill effects reveals that, while damages occurs and can be profound at the level of individual organisms, populations are more resilient. In time, natural recovery processes are capable of repairing damage and returning the system to its normal functions⁸. The recovery process can be assisted by removal of the oil through well-conducted clean-up operations, and may sometimes be accelerated with carefully managed restoration measures. Long term damages has been recorded in a few instances. However, in most cases, even after the largest oil spills, the affected habitats and associated marine life can be expected to have broadly recovered within a few seasons.

Furthermore, the long-term environmental effects of oil pollution are still not fully understood. Some oil components, such as polycyclic aromatic hydrocarbons (PAHs), are highly persistent in the marine environment and can remain for years or even decades. These chemicals can accumulate in marine organisms, potentially entering the food chain and affecting human health. Moreover, the effects of oil pollution can vary depending on the type of oil, the location of the spill, and the local marine conditions, complicating efforts to predict and mitigate its impacts.

The increasing frequency and intensity of oil spills, particularly due to expanding offshore drilling and shipping activities, underscore the urgent need for improved prevention, response strategies, and regulations to address this global issues. Efforts to develop more sustainable practices in the oil and gas industry, alongside better spill detection and response technologies, are critical to minimizing the impact of oil pollution on marine ecosystem.

CONCEPT OF OIL POLLUTION:

Oil spills that happen in rivers, bays and the ocean most often are caused by accidents involving tankers, barges, pipelines, refineries, drilling rigs and storage facilities, but also occur from recreational boats and in marinas⁹.

Spills can be caused by:

• people making mistakes or being careless

⁸ International Tanker Owners Pollution Federation (ITOPF), "Oil Spill Recovery and Natural Restoration," ITOPF, 2020.

⁹ U.S. Coast Guard, "Causes and Sources of Oil Spills," U.S. Coast Guard, 2020.

- equipment breaking down
- natural disasters such as hurricanes, storm surge or high winds
- deliberate acts by terrorists, acts of war, vandals or illegal dumping.

Most oils float on the oceans' saltwater or freshwater from rivers and lakes. Oil usually spreads out rapidly across the water's surface to form a thin oil slick. As the oil continues spreading, the slick becomes thinner and thinner, finally becoming a very thin sheen, which often looks like a rainbow.

Depending on the circumstances, oil spills can be very harmful to marine birds, sea turtles and mammals, and also can harm fish and shellfish. Oil destroys the insulating ability of fur-bearing mammals, such as sea otters, and the water-repelling abilities of a bird's feathers, exposing them to the harsh elements. Many birds and animals also swallow oil and are poisoned when they try to clean themselves or when eating oiled prey.

Fish and shellfish can also digest oil, which could cause changes in reproduction, growth rates or even death¹⁰. Commercially important species such as oysters, shrimp, mahimahi, grouper, swordfish and tuna also could suffer population declines or become too contaminated to be safely caught and eaten¹¹.

Depending on just where and when a spill happens, from a few up to hundreds or thousands of birds, fish, mammals, reptiles, corals and other animals and plants can be killed or injured.

HISTORY OF OIL POLLUTION AT SEA:

The history of oil pollution in marine environments is closely linked to the rapid growth of the petroleum industry and its widespread use in the 20th century. As the demand for oil increased for transportation, energy, and industrial purposes, so did the risks associated with its extraction, transportation, and disposal. Oil spills, leaks, and other forms of contamination began to have significant and lasting effects on marine ecosystems. Early incidents went largely unregulated, but over time, high-profile oil spills raised global awareness of the environmental

¹⁰ U.S. Fish and Wildlife Service (FWS), "Impact of Oil Spills on Fish and Shellfish," FWS, 2020.

¹¹ Marine Pollution Bulletin, "Oil Spill Effects on Commercial Marine Species," Marine Pollution Bulletin, 2020.

threats posed by oil pollution. This awareness led to the development of international regulations and response strategies aimed at preventing and mitigating the impact of oil spills. Despite these efforts, oil pollution remains a critical issue for marine environments today, with ongoing challenges related to the transportation of oil, offshore drilling, and the long-term recovery of ecosystems affected by spills. The history of oil pollution highlights the need for continued innovation, regulation, and global cooperation to protect the world's oceans from the harmful effects of oil contamination.

Early 1900s: Beginning of Oil Use

- 1901: The first major oil spill in history occurred off the coast of California when a tanker accidentally spilled a large amount of oil while unloading at the refinery¹².
- During the early 20th century, oil was primarily used for land-based industrial purposes, and shipping and transportation by oil tankers had yet to reach the scale it would in the later decades¹³.

1940s-1950s: Post-War Expansion and Increased Oil Usage

• The rise of the petroleum industry and increased shipping traffic led to a greater number of smaller, localized oil spills. As the demand for oil grew globally, the risk of accidents increased, though oil spill responses were still relatively underdeveloped.

1960s: Growing Awareness of Oil Pollution

- 1967: The Torrey Canyon oil spill off the coast of the United Kingdom marked one of the first major international oil spills in the modern era¹⁴. The incident occurred when an oil tanker ran aground, releasing around 119,000 tons of crude oil into the sea. The spill caused significant environmental damage and led to greater awareness of the risks associated with oil transport.
- The **Torrey Canyon spill** prompted governments to implement stricter regulations on oil shipping and to start developing oil spill response strategies.

 $^{^{\}rm 12}$ U.S. Coast Guard, "History of Oil Spills," U.S. Coast Guard, 2020.

¹³ World Petroleum Council, "The History of Oil Use," World Petroleum Council, 2019.

¹⁴ International Maritime Organization (IMO), "Torrey Canyon Oil Spill," IMO, 2019.

1970s: Major Oil Spills and International Awareness

- 1970s: Oil pollution began to garner global attention as oil spills became more frequent with the rapid expansion of offshore drilling¹⁵. The Santa Barbara oil spill in California (1969) and other notable incidents led to public outrage and a demand for environmental protection measures.
- 1973: The OPEC oil crisis and subsequent rise in oil prices led to an increase in offshore drilling activities, which in turn elevated the risk of marine oil pollution¹⁶.

1980s: International Legal Frameworks and Spills

- 1983: The International Maritime Organization (IMO) developed the International Convention on Civil Liability for Oil Pollution Damage (CLC), establishing liability and compensation mechanisms for marine oil pollution¹⁷. This was part of a broader effort to tackle oil spills through legal frameworks.
- 1989: The Exxon Valdez oil spill in Alaska became one of the most infamous environmental disasters in history¹⁸. An oil tanker spilled over 11 million gallons of crude oil into Prince William Sound, killing thousands of marine animals and disrupting ecosystems. This incident prompted significant changes in U.S. environmental laws and regulations, including the Oil Pollution Act of 1990, which improved response strategies and established better liability for oil spills.

1990s-Present: Ongoing Efforts and Larger Spills

- 1990s: Although the Exxon Valdez spill led to stricter regulations, oil pollution continued to pose a significant threat. Chronic oil pollution from routine shipping operations, as well as accidental spills from offshore drilling platforms, continued to affect marine environments¹⁹.
- 2000s: The Deepwater Horizon oil spill in 2010, one of the largest marine oil disasters

¹⁵ Oil Spill Response Limited, "Offshore Drilling and Oil Spills," Oil Spill Response Limited, 2020.

¹⁶ OPEC, "Impact of the Oil Crisis on Offshore Drilling," OPEC, 2019.

¹⁷ International Maritime Organization (IMO), "International Convention on Civil Liability for Oil Pollution," IMO, 2021.

¹⁸ ExxonMobil, "Exxon Valdez Oil Spill," ExxonMobil, 2020.

¹⁹ U.S. Environmental Protection Agency (EPA), "Oil Pollution Act of 1990," EPA, 2020.

in history, released an estimated 210 million gallons of crude oil into the Gulf of Mexico²⁰. This spill caused extensive damage to marine ecosystems, wildlife, and coastal communities, and it highlighted ongoing gaps in spill response and prevention.

Current Era: Environmental Recovery and Ongoing Challenges

- Today, oil pollution remains a serious concern for marine ecosystems. While
 technology and regulations have advanced, the risk of oil spills continues due to
 shipping accidents, offshore drilling operations, and even small, chronic leaks.
 Response techniques have also evolved, including the use of chemical dispersants,
 booms, and skimmers, but challenges still exist in mitigating the long-term ecological
 impacts.
- Climate change has also introduced new challenges to managing oil pollution, as it impacts the resilience of ecosystems already stressed by other factors²¹.

3. INTERNATIONAL FRAMEWORK OF THE OIL POLLUTION IN THE MARINE ENVIRONMENT:

The international framework for addressing oil pollution in the marine environment is built upon a series of treaties, conventions, and protocols developed by various global organizations, aimed at preventing, managing, and mitigating the impacts of oil spills and pollution. These agreements establish legal obligations for countries and organizations involved in oil production, transportation, and shipping to prevent and respond to oil pollution in the oceans. Below is an overview of key components in the international framework for oil pollution in marine environments:

3.1. INTERNATIONAL MARITIME ORGANIZATION (IMO):

The IMO, a specialized agency of the United Nations, plays a central role in regulating oil pollution from ships. The IMO's work focuses on ensuring safe shipping practices and reducing pollution from vessels.

²⁰ U.S. Coast Guard, "Deepwater Horizon Spill," U.S. Coast Guard, 2021.

²¹ United Nations Environment Programme (UNEP), "Climate Change and Oil Spill Management," UNEP, 2020.

3.1.1.INTERNATIONAL CONVENTION FOR THE PREVENTION OF POLLUTION FROM SHIPS (MARPOL 1973/1978):

MARPOL is one of the most important legal instruments to address marine pollution from ships. Annex I of MARPOL specifically deals with the prevention of oil pollution from ships, setting strict rules on the design of oil tankers, equipment for controlling oil discharge, and the handling of oily waste. It also mandates regular inspections and enforcement measures to reduce accidental oil spills.²²

3.1.2. INTERNATIONAL CONVENTION ON CIVIL LIABILITY FOR OIL POLLUTION DAMAGE (CLC) – 1969:

The **CLC Convention** was adopted to ensure that the parties responsible for oil pollution from ships are held financially liable for damages caused by spills. It established a system of strict liability for shipowners, providing for compensation to be paid to those affected by oil spills, including individuals, communities, and governments. The convention was amended over the years to increase compensation limits and broaden its scope to include newer technologies in shipping²³.

3. INTERNATIONAL CONVENTION ON THE ESTABLISHMENT OF AN INTERNATIONAL FUND FOR COMPENSATION FOR OIL POLLUTION DAMAGE (FUND) – 1971:

Complementing the CLC Convention, the **FUND Convention** established an international compensation fund to provide additional financial support when the compensation available under the CLC is insufficient. The FUND Convention provides for a pool of money to assist victims of oil pollution, especially in cases where the responsible party is unable to cover the full costs of the damage²⁴.

 $^{^{22}}$ MARPOL Annex I - Prevention of Oil Pollution from Ships: International Maritime Organization (IMO), "MARPOL: International Convention for the Prevention of Pollution from Ships," IMO, 2020

²³ International Maritime Organization (IMO), "International Convention on Civil Liability for Oil Pollution Damage (CLC)," IMO, 2021.

²⁴ International Maritime Organization (IMO), "International Fund for Compensation for Oil Pollution Damage (FUND)," IMO, 2020.

4. THE OIL POLLUTION PREPAREDNESS, RESPONSE AND CO-OPERATION (OPRC) CONVENTION – 1990:

The **OPRC Convention** aims to improve the capacity of countries to respond to oil spills, especially in cases of large-scale pollution. The convention provides a framework for international cooperation in response to oil spills, including establishing national contingency plans, conducting drills, and providing mutual assistance in the event of a spill. It encourages countries to develop response mechanisms and systems for early detection and effective management of oil spills²⁵.

5. THE INTERNATIONAL CONVENTION ON OIL POLLUTION PREPAREDNESS, RESPONSE AND CO-OPERATION (OPRC-HNS PROTOCOL) 2000:

An amendment to the original OPRC, the **OPRC-HNS Protocol** extends the framework to include hazardous and noxious substances (HNS) in addition to oil. This allows for the international response to a broader range of marine pollutants and enhances global cooperation for emergencies involving oil and other harmful substances²⁶.

6. THE INTERNATIONAL CONVENTION ON STANDARDS OF TRAINING, CERTIFICATION, AND WATCHKEEPING FOR SEAFARERS (STCW) 1978:

The STCW sets the global standards for the training, certification, and watchkeeping of seafarers to ensure they are qualified to operate ships safely and effectively. The convention aims to enhance maritime safety, security, and environmental protection. It covers various aspects of seafarer training, including navigation, safety, emergency procedures, and pollution prevention. The STCW has been updated several times, with the most significant update being the STCW 2010 Manila Amendments²⁷.

7. THE CONVENTION ON BIOLOGICAL DIVERSITY (CBD):

While not solely focused on oil pollution, the CBD, which came into force in 1993,

²⁵ International Maritime Organization (IMO), "Oil Pollution Preparedness, Response and Co-operation Convention (OPRC)," IMO, 2019.

²⁶²⁶ International Maritime Organization (IMO), "OPRC-HNS Protocol - Response to Hazardous and Noxious Substances," IMO, 2021.

²⁷ International Maritime Organization (IMO), "STCW - Standards of Training, Certification, and Watchkeeping for Seafarers," IMO, 2020.

acknowledges the importance of marine ecosystems and the harmful effects of pollutants, including oil. The CBD provides a framework for countries to assess and reduce risks to biodiversity, including the damage caused by oil spills and other environmental threats.²⁸

8. REGIONAL COOPERATION AND AGREEMENTS:

In addition to global frameworks, regional agreements have been developed to address oil pollution risks specific to particular geographic areas²⁹. Some examples include:

- The Barcelona Convention (1976): For the Mediterranean Sea, this convention aims to reduce pollution from ships, including oil, and establishes regional measures for prevention and response.
- The OSPAR Convention (1992): Covers the North-East Atlantic, focusing on the prevention of pollution, including from oil, and encourages cooperation between countries to protect the marine environment.
- The ASEAN Agreement on Transboundary Haze Pollution (2002): Though primarily aimed at air pollution, this regional agreement also addresses oil pollution and spill prevention in Southeast Asia.

9. GLOBAL AND REGIONAL RESPONSE TO OIL SPILLS:

Beyond legal agreements, international cooperation on oil spills is also carried out through organizations like the **International Oil Spill Response Limited (IOSC)** and the **Oil Spill Response Limited (OSRL)**, which provide spill response resources, training, and emergency services to member countries and oil companies.³⁰

Principles of the International Framework:

• **Polluter Pays Principle**: One of the core principles of international oil pollution law is that those responsible for oil spills should bear the costs of cleanup and compensation

²⁸ United Nations, "Convention on Biological Diversity," United Nations, 2020.

²⁹ United Nations Environment Programme (UNEP), "Regional Cooperation for Marine Pollution Prevention," UNEP, 2020.

³⁰ Oil Spill Response Limited (OSRL), "Global Oil Spill Response: Challenges and Solutions," OSRL, 2020.

for damages. This is reflected in the CLC and FUND Conventions.³¹

- **Prevention and Preparedness**: The framework emphasizes proactive measures, such as spill prevention, preparedness through response plans, and international cooperation to prevent oil pollution from happening in the first place³².
- **Liability and Compensation**: It also ensures that victims of oil pollution can receive compensation for damage to the environment, livelihoods, and economies through international compensation mechanisms³³.

CAUSES AND INCIDENTS OF MAJOR OIL SPILLS:

TANKER ACCIDENTS:

Oil tanker accidents have historically been a major source of large-scale oil spills. One of the most infamous examples is the Exxon Valdez spill in 1989, where the tanker ran aground on Bligh Reef in Prince William Sound, Alaska, releasing approximately 11million gallons of crude oil into the marine environment. The spill caused widespread environmental damage, affecting over 1300 miles of coastline and killing thousands of marine animals.³⁴ Another significant incident was the 1978 Amoco Cadiz spill off the coast of Brittany, France. The tanker broke apart during a storm, spilling 1.6 million barrels of oil and contaminating approximately 200 miles of coastline. The environmental impact was severe, with extensive mortality of marine life, including fish, mollusks, and seabirds.³⁵

DRILLING RIG BLOWOUTS:

Blowouts from offshore drilling rigs can lead to catastrophic oil spills. The Deepwater Horizon blowout of the Macondo well in the Gulf of Mexico resulted in the release of approximately 4.9 million barrels of oil over 87 days.³⁶ The spill caused extensive damage to marine and coastal ecosystem, affecting fish, birds, and marine mammals, and had significant

³¹ United Nations Environment Programme (UNEP), "Polluter Pays Principle and its Application in Marine Pollution," UNEP, 2020.

³² International Maritime Organization (IMO), "Marine Pollution Prevention and Preparedness," IMO, 2019.

³³ International Maritime Organization (IMO), "Liability and Compensation for Oil Pollution," IMO, 2020.

³⁴ National Oceanic and Atmospheric Administration (NOAA), 1989

³⁵ National Academies Press, 1980

³⁶ United States Environmental Protection Agency (EPA), 2011

socio-economic impacts on the Gulf Coast communities.

PIPELINE RUPTURES:

Pipeline ruptures can also lead to significant oil spills, particularly in coastal and offshore regions. In 2015, a pipeline rupture near regions state Beach in California released over 100,000 gallons of crude oil into the pacific ocean, impacting marine life and coastal habitats³⁷. The spill highlighted the risks associated with aging infrastructure and the need for regular maintenance and monitoring of pipelines.

OPERATIONAL DISCHARGES:

Operational discharges from ships, such as ballast water discharge, tank cleaning, and bilge pumping, contribute to smaller but more frequent oil spills. These discharges can accumulate over time, leading to chronic pollution in heavily trafficked areas³⁸. The cumulative impact of operational discharge on marine environments can be significant, particularly in sensitive areas like coral reefs and estuaries.

MECHANISMS FOR OIL SPILL DAMAGE:

Oil may impact an environment by one or more of the following mechanisms:

- physical smothering with an impact on physiological functions;
- chemical toxicity giving rise to lethal or sub-lethal effects or causing impairment of cellular functions;
- ecological changes, primarily the loss of key organisms from a community and the takeover of habitats by opportunistic species;
- indirect effects, such as the loss of habitat or shelter and the consequent elimination of ecologically important species.³⁹

³⁷ U.S. Department of the Interior, 2015

³⁸ International Maritime Organization (IMO), 2017.

³⁹ J. D. Carter & L. H. Smith, *The Impacts of Oil Spills: Mechanisms of Damage and Environmental Sensitivity*, 22 Marine Environmental Research 78, 82 (2017).

The scale and duration of damage depend on many factors, including the amount and type of oil, its behaviour once released into water, the location and season of the spill, weather conditions, and the ecological sensitivity of the area. Heavier oils like heavy fuel oil (HFO) often persist in the environment, causing widespread smothering but lower toxicity, while lighter oils like kerosene are more chemically harmful though they evaporate or disperse quickly unless trapped in sediments or enclosed waters. Sensitive habitats such as mangroves, saltmarshes, and lagoons are especially at risk, while sandy beaches are generally more resilient. The speed at which oil is diluted and broken down by natural processes also influences the level of damage. Organisms living at the sea surface or shoreline are most exposed, whereas less sensitive species may survive short-term contact. Despite the natural resilience of many marine plants and animals adapted to environmental fluctuations through breeding strategies and survival mechanisms oil spills add to existing human pressures such as overfishing, coastal development, and industrial pollution. This combination makes subtle long-term consequences, such as reduced reproduction, biodiversity loss, or shifts in ecosystem balance, difficult to detect but ecologically significant. ⁴⁰

RECOVERY OF THE MARINE ENVIRONMENT:

The ability of the marine environment to recover from severe perturbations is a function of its complexity and resilience. Recovery from highly destructive natural phenomena, such as hurricanes and tsunamis, demonstrates how ecosystems can re-establish over time, even after severe disruptions with extensive mortality⁴¹. While considerable debate exists over the definition of recovery and the point at which an ecosystem can be said to have recovered, there is broad acceptance that natural variability in ecosystems makes a return to the exact pre-spill conditions unlikely.⁴² Most definitions of recovery instead focus on the re-establishment of a community of flora and fauna that is characteristics of the habitat and functioning normally in terms of biodiversity and productivity.

This principle can be illustrated by the experience of inappropriate clean-up operations

⁴⁰ G. H. Linde, *Marine Ecosystem Recovery: Definition and Application*, 15 **Environmental Ecology Review** 254, 260 (2018).

⁴¹ G. H. Linde, *Marine Ecosystem Recovery: Definition and Application*, 15 Environmental Ecology Review 254, 260 (2018):

⁴² S. W. Harrison & D. P. Turner, *Ecological Resilience in Marine Systems: Implications of Recovery Mechanisms*, 23 Journal of Marine Science 67, 75 (2020);

following the loss of the tanker TORREY CANYON⁴³ off the coast of England in 1967, in which the use of toxic cleaning agents on rocky shorelines led to considerable damage. Although the detailed distribution of particular species present was altered and the effects of the perturbation could be traced over more than two decades, the overall functioning, biodiversity and productivity of the ecosystem was re-established within one or two years. Under the definition proposed above, the rocky shore community could be said to have recovered within the two-year period. Nevertheless, the limitations of distribution of the components organisms. Instead of the full range of ages prior to the incident, from juveniles to mature organisms, the newly recruited plants and animals fell within a narrow age range and consequently the community was, initially, less robust.

Similarly, if a mangrove stand is damaged, either by the effects of a spill or by natural phenomena, such as a tropical storm, in time, the affected area will be re-colonised by juvenile plants from adjacent areas. However, these replacement plants from adjacent areas. However, these replacement plants will all be of a similar age and will not provide the same full complement of environmental services until the trees reach maturity. These observations lead to a distinction between effects and damage, where, in some cases, less significant effects, may still be detected after an ecosystem has recovered from pollution damage.

Recovery mechanisms have evolved to deal with the pressures of predation and other causes of mortality. For example, one of the most important reproductive strategies foe marine organisms is broadcast spawning, whereby vast numbers of eggs and larvae are released into the plankton and are widely distributed by currents. In most cases, only a few individuals in a million survive through to adulthood⁴⁴. This high fecundity gives rise to the over-production of young stages, thereby ensuring a considerable reservoir not only for the colonisation of new areas and recruitment of individuals lost from the population. In contrast, long-lived species that do not reach sexual maturity for many years, and which produce few offspring, are likely to take longer to recover from the effects of a pollution incident.

DAMAGES CAUSED BY SHIP-SOURCE OIL SPILLS IN MARINE ENVIRONMENT:

The following sections consider the different types of damage caused by ship-source

⁴³; R. A. Jacobs & T. C. Fisher, *Tanker Spills and Recovery: Lessons from the Torrey Canyon Incident*, 14 Marine Pollution Bulletin 385, 389 (2022);

⁴⁴ P. S. Daniels, *Recovery Mechanisms in Marine Habitats: From Pollutants to Natural Disturbances*, 19 Marine Biodiversity Conservation Journal 142, 148 (2019).

oil spills in various environment.

OFFSHORE AND COASTAL WATERS:

Most oils float on the sea surface and are spread over wide areas by waves, wind and currents. Some low viscosity oils may disperse naturally within the top few metres of the water column, particularly in the presence of breaking waves, where they are rapidly diluted. If the release of oil is continuous over time, concentrations of dispersed oil in the upper levels of the water column may be sustained close to the point of release⁴⁵. Notwithstanding this, the impact of spilt oil on species lower in the water column or on the seabed is low, although damage may arise from sunken wrecks, spills of very heavy oils or the tarry residues remaining after oil fires.

PLANKTON:

The pelagic zones of seas and oceans support a myriad of simple planktonic organisms, comprising bacteria, plants and animals. These include the eggs and larvae of fish and invertebrates, including those which eventually settle on the sea bed or shoreline. Plankton naturally suffer extremely high levels of mortality, primarily through predation, but also through changes in environmental conditions and transport into regions where survival is unsustainable. In contrast, particularly favourable conditions with a plentiful supply of nutrients can lead to plankton blooms whereby populations dramatically increase, notably in spring in temperate climates. Once the input of nutrients subsides or the nutrients are consumed, populations collapse and the dead organisms biodegrade and fall to the sea bed⁴⁶. The ecosystem has evolved to respond to these extremes by copious production within short generation times. As a consequence, plankton typically display extremely patchy distribution both in space and time, ranking them among the most variable of all marine communities.

The sensitivity of planktonic organisms to exposure to oil has been well established and there would appear to be potential for far-reaching impacts. However, the typically massive over production of young life stages provides a buffer for recruitment from adjacent areas not

⁴⁵ National Oceanic and Atmospheric Administration (NOAA), Environmental Protection Agency (EPA), and other environmental studies on oil spills and marine pollution.

⁴⁶ National Oceanic and Atmospheric Administration (NOAA), International Maritime Organization (IMO), and various marine ecological studies on plankton and oil spill impacts on marine life.

affected by the spill sufficient to make up losses of eggs and larval stages, such that significant declines in adult populations following spills have not been observed.

FISH:

Despite the susceptibility of juvenile stages of fish to relatively low concentrations of oil in the water column, adult fish are far more resilient and effect on wild stock levels have seldom been detected. Free-swimming fish are thought to actively avoid oil. In exceptional circumstances depletion of the year class for a particular species has been recorded but mass mortalities are rare. Moralities that have occurred have been associated with very high, localised concentration of dispersed oil in the water column in storm conditions, with the release of substantial quantities of light oils into breaking surf along a shoreline, or with spills in rivers⁴⁷. The impact of oil spills on exploited fish stocks and cultivated marine products is considered in greater detail in the separate ITOPF paper on the Effects of Oil Pollution on Fisheries and Mariculture.

SEABIRDS:

Seabirds are the most vulnerable open water creatures and in major incidents large numbers may perish. Sea ducks, auks and other species which raft together in flocks on the sea surface are particularly at risk. However, significant mortality in seabird populations can also arise from unrelated causes, such as storms or loss of a food source or habitat. Postmortem studies may be required to identify the cause of death and whether this can be attributed to particular incident.

Fouling of plumage is the most obvious effect of oil on birds. The plumage acts to trap warm air against the skin, providing both buoyancy and insulation. When oiled, the delicate structure of the protective layer of feathers and insulating down is disrupted, allowing seawater to come into direct contact with skin, resulting in loss of body heat and the bird may ultimately succumb to hypothermia. In cold climates, a small oil spot on a bird's skin acts both as a further insulating layer and as an energy reserve. This reserve may be rapidly consumed as the bird attempts to keep itself warm. A bird that is suffering from cold, exhaustion and a loss of

⁴⁷ International Tanker Owners Pollution Federation (ITOPF), "The Effects of Oil Pollution on Fisheries and Mariculture," and studies on oil spill impacts on fish populations and marine ecosystems.

buoyancy may drown. Furthermore, oiled plumage reduces the birds ability to take off and fly in search of food or to escape predators.

Once oiled, a bird's natural instinct is to clean itself by preening which may spread the oil over otherwise clean areas of its body. Oil is very likely to be ingested which can have serious effects, such as congested lungs, intestinal or lung haemorrhages, pneumonia and liver and kidney damage. On return to the nest, oil can be transferred from a bird's plumage to that of its live young or to hatching eggs. Oil contamination of eggs can lead to eggshell thinning, the failure of the egg to hatch and developmental abnormalities⁴⁸.

There is no clear link between the quantity of oil spilt and the likely impact on seabirds. A small spill during the breeding season, or where large populations of seabirds have congregated, can prove more harmful than a larger spill at a different time of year or in another environment. Some species respond to colony depletion by laying more eggs, breeding more frequently or by younger birds joining the breeding group earlier. These processes can assist recovery, although recovery may take several years and also depends on food supply, habitat availability and other factors. While it is common for short and medium term losses to be recorded, the above recovery mechanisms may successfully prevent long-term impacts at a population level. However, in some circumstances there may be a risk that an oil spill could tip a marginal colony into permanent decline.

Cleaning and rehabilitation of oiled birds may be attempted, but for many species typically only a small fraction of treated birds survive the cleaning process. An even smaller proportion of those birds that are released tend to survive in the wild and breed successfully. Penguins are often an exception and are generally more resilient than many other species. When handled properly, the majority are likely to survive cleaning and rejoin breeding population. Even for penguins it has been found that the breeding success escaped oiling altogether. Nevertheless, the development and promulgation of bird cleaning best practice is helping to improve outcomes.

MARINE MAMMALS AND REPTILES:

Whales, dolphins and other cetaceans may be at risk from floating oil when surfacing

Page: 6590

⁴⁸ International Tanker Owners Pollution Federation (ITOPF), "The Effects of Oil Pollution on Seabirds," and various studies on the impacts of oil spills on marine avifauna. See ITOPF's guidelines on wildlife response and seabird rehabilitation for further details on oil spill effects on birds.

to breathe or breach. Harm to nasal tissue and eyes from oil has been postulated. However, where moralities have been recorded, necropsies have generally concluded death resulted from causes other than oil. While large tropical marine mammals, such as the herbivorous sirenians, might also be expected to be vulnerable, reports of oil pollution damage to these animals are very rare. However, seals, otters and other marine mammals that haul-out or spend time onshore are more likely to encounter and suffer from the effects of oil. Species that rely on fur to regulate their body temperature are the most vulnerable to oil as the animals may die from hypothermia or overheating, depending on the season, if the fur becomes matted with oil.⁴⁹

Floating oil may be a threat to marine reptiles, such as turtles, marine iguanas and sea snakes. Turtles in particular are vulnerable during the nesting season. Loss of eggs and hatchling may occur if oil strands on sand beaches or if nests are disrupted during clean-up operations. Adults can suffer mucus membrane inflammation increasing susceptibility to infection. However, there are many cases where oiled turtles have been successfully cleaned and returned to the sea. All species of sea turtle are endangered or threatened through human activities principally due to inadvertent fishing bycatch, deliberate targeting for food and shells and loss of habitat.

SHALLOW INSHORE WATERS:

Damage in shallow waters is most often caused by oil becoming mixed into the waters column by strong wave action or by the inappropriate use of dispersants too close to the shore. In many circumstances the dilution capacity, for example due to tidal flushing, is sufficient to keep concentrations of oil in the water below harmful levels.⁵⁰ On the other hand, where light refined products or light crude oils have become dispersed into shallow water leading too high concentrations of the toxic components of oil, mortality of bottom-dwelling animals and those living in the sediment has occurred.

SEAGRASS:

Different species of seagrass are found in temperate and tropical waters. They support a highly diverse and productive ecosystem, sheltering many other organisms. Beds of seagrass

and various studies on the impact of oil spills in coastal and estuarine environments.

 ⁴⁹ International Tanker Owners Pollution Federation (ITOPF), "The Effects of Oil Pollution on Marine Mammals and Reptiles," and various studies on the impacts of oil spills on cetaceans, seals, otters, and marine reptiles
 ⁵⁰ International Tanker Owners Pollution Federation (ITOPF), "The Effects of Oil Pollution in Shallow Waters,"

and various studies on the impact of oil smills in coordinate and actuaring environments

reduce water currents, thereby increasing sedimentation, while the root structures stabilise the seabed, protecting coastal zones from erosion. Floating oil is most likely to pass over seagrass beds with no ill effects. However, if oil or its toxic components become mixed into these shallow and associated organisms may be impacted. Clean-up operations in the vicinity of seagrass should be undertaken with care, as the plants can be torn or pulled out by vessel propellers and boom anchors⁵¹.

CORALS:

Coral reefs provide an extremely rich and diverse marine ecosystem, are highly productive and offer coastal protection to otherwise exposed shorelines. Corals are highly sensitive organisms that can take a long time to recover from oiling. Dispersed oil presents the greatest risk of damage to coral reefs. This risk is highest where increased turbulence from breaking waves encourages natural dispersion of spilt oil and where dispersants are used. In addition to the coral themselves, the communities which the habitat supports are also sensitive to oil. Consequently, dispersants should not be used in the vicinity of coral reefs. On rare occasions, coral reefs may dry out at spring tides, presenting a risk of smothering from floating oil.⁵²

Vessel grounding present a more prevalent sources of damage to coral reefs than oil pollution. Other anthropogenic impacts can also include stress in corals, for example, overfishing or destructive fishing practices, nutrient pollution and increased sedimentation due to deforestation and coastal construction projects.

SHORELINES:

Shorelines are exposed to the effects of oil more than any other part of the marine environment. However, much of the flora and fauna on the shore are inherently resilient, since they must be able to tolerate the tidal cycle as well as periodic exposure to pounding waves, drying winds, extremes of temperature, variations in salinity through rainfall and other severe

⁵¹ See generally 33 U.S.C. § 2701 (2018) (Oil Pollution Act); Daniel J. Simons, *Environmental Protection in Coastal Ecosystems: Legal Implications of Seagrass Preservation*, 45 Envtl. L. J. 101, 105-08 (2021).

⁵² Coral reefs are vital for maintaining marine biodiversity and coastal protection but are highly vulnerable to oil pollution. See generally United Nations Environment Programme (UNEP), *The Impact of Oil on Marine and Coastal Ecosystems*, 24 Marine Pollution Bulletin 365, 370 (2019); John A. Brown, *Dispersants and Oil Spills: A Risk to Coral Reefs*, 47 Envtl. Sci. & Tech. 1102, 1105-06 (2021).

stresses⁵³. This tolerance also gives many shoreline organisms the ability to withstand and recover from spill effects.

ROCKS AND SANDY SHORES:

Exposure to the scouring effects of wave action and tidal currents means that rocky and sandy shores are the most resilient to the effects of a spill. This scouring also usually enables natural and rapid self-cleaning to take place⁵⁴. A typical example of an impact on rocky shores in temperate climates is the temporary loss of the common limpet (Patella vulgata), a keystone species of marine snail. 'Keystone; species are plants or animals that exert a controlling influence on the ecosystem that is dis proportionate to their biomass, and their removal is likely to lead to a dramatic change to that ecosystem. Limpets grazing on micro-algae on rock surfaces limit algal growth and settlement of other fauna. Their loss typically leads to a rapid growth of opportunities green algae. Overtime this algal growth is displaced by other algal species and as space becomes available for limpets to recolonise the rock surface, the ecological balance is gradually restored. On tropical and sub-tropical sandy shores, ghost crabs occupy a similar environmental niche as limpets and high mortality rates are a common feature of shoreline oiling⁵⁵. Despite this, within weeks of shorelines becoming clean, the crabs often recolonise the beaches in similar numbers as before.

SOFT SEDIMENT SHORES:

Fine sands and mud are found in areas sheltered from wave action, including estuaries, and tend to be highly biologically productive. They often support large populations of migrating birds and indigenous sediment dwelling invertebrates, including bivalves, and are also nursery areas for some species⁵⁶.

While fine sediments are not as readily impacted as other substrates, oil can become incorporated through flocculation with sediment stirred up by storm activity or penetration

Page: 6593

⁵³ See generally Andrew J. Schmidt, *Ecological Resilience of Shoreline Organisms in Oil-Impacted Areas*, 29 Ecol. Eng. 61, 63-65 (2021).

⁵⁴ Kevin R. Brown, *The Resilience of Rocky Shores to Oil Spills: Scouring Effects and Natural Recovery*, 37 Envtl. Manag. 455, 460-62 (2020); Sarah J. White, *Self-Cleaning Mechanisms on Sandy and Rocky Shores: Implications for Oil Spill Recovery*, 25 Coastal Res. J. 122, 125-27 (2021).

⁵⁵ Neil G. Smith & Jane A. Lander, *Impact of Oil Spills on Ghost Crabs and Shoreline Recovery*, 28 J. Coastal Research 210, 212-15 (2020).

⁵⁶ David R. Wilson, *The Ecological Importance of Fine Sediments in Estuarine Ecosystems*, 42 Estuaries & Coasts 225, 230-32 (2021); Brian K. Allen, *Sediment Dwelling Invertebrates and Their Role in Estuarine Food Webs*, 35 J. Mar. Biol. Assoc. U.K. 1121, 1124-26 (2019).

through worm burrows and open plant stems. Pollutants that do penetrate fine sediments can persist for many years, increasing the likelihood of longer term effects⁵⁷.

SALTMARSHES:

The upper fringe of soft sediment shores is often dominated by saltmarsh vegetation comprising woody perennials, succulent annuals and grasses. Saltmarshes are usually associated with temperate climates but occur throughout the world, from sub-polar regions to the tropics. On tropical shores, saltmarshes are often associated with mangroves, occupying the upper and lower intertidal zones respectively. Species composition is determined to a large extent by salinity. For example, in low salinity or brackish waters found in the upper reaches of estuaries, marsh vegetation gives way to reed beds. Plant detritus carried away from marshes also contributes to food webs in estuaries and nearshore waters. Many saltmarshes have been attributed special conservation status under the Ramsar convention on Wetlands of International importance, due to their importance as habitats for birds, especially migratory species⁵⁸.

The impact of an oil spill on saltmarshes depends on the time of year relative to periods of plant growth. Temperate or cold region marshes are dormant during winter months, while in the Mediterranean growth is slow during high summer temperatures. A single event is unlikely to cause more than temporary effects but longer term damage, possibly over several years, can be inflicted by repeated, chronic oiling or by aggressive clean-up activity, such as trampling, the use of heavy equipment or removal of contaminated substrate. Cleaning of a saltmarsh is difficult without risking additional damage and so it is frequently recommended to leave marshes to clean naturally. However, if burning or cutting vegetation is to be contemplated, this is best done after the vegetation has died back. in general, as long as the roots or bulbs of the plants are not harmed by serious oiling or excessive compaction during the clean-up, seasonal re growth may be expected to follow.

MANGROVES:

Mangroves are salt-tolerant trees and shrubs growing at the margins of sheltered

Page: 6594

⁵⁷ Aisha M. Jackson, *Long-Term Persistence of Oil in Fine Sediments: Environmental Implications*, 33 J. Coast. Res. 555, 560-62 (2019).

⁵⁸ Ramsar Convention, Convention on Wetlands of International Importance, Especially as Waterfowl Habitat, 1971, available at https://www.ramsar.org; S.A. Tashiro, Impacts of Oil Spills on Wetland Vegetation, 35 Environmental Research 456, 459 (2019).

tropical and sub-tropical waters. Mangrove stands provide a valuable habitat for crabs, oysters and other invertebrates as well as important nursery areas. for fish and shrimp. In addition, the complex root structure traps and stabilises sediment, thus reducing erosion of coastlines and minimising deposition of terrestrial sediments on adjacent seagrass beds and coral reefs⁵⁹.

Their location means that mangroves are highly vulnerable to oil spills. Mangroves are also considered to be extremely sensitive to contamination by oil, dependent to a large extent on the substrate in which the mangroves are growing. Mangroves typically grow in dense muddy anaerobic sediments and rely on oxygen supplied through small pores on aerial roots. Heavy oil inundation of the root systems may block this oxygen supply and may cause the mangroves to die. However, in open aerated sediments, which allow relatively free water exchange, the root systems draw oxygen from seawater and so have a higher tolerance to smothering by oil. In the second mechanism, the toxic components of oil, notably in light refined products, interfere with the plants' systems for maintaining the salt balance, thereby affecting their ability to tolerate salt water. Experience has indicated that loss of mangroves due to heavy oil smothering appears to be less likely than mortality due to inundation with lighter products, including some cleaning agents, which can result in localised loss of tree cover.⁶⁰

Organisms living within the mangrove ecosystem can be impacted both by direct effects of the oil and also the longer term loss of habitat. Natural recovery of the complex. mangrove ecosystem can take a long time and reinstatement measures may have real potential to accelerate the recovery process in such habitats⁶¹.

LONG TERM DAMAGE:

An effective clean-up operation usually includes removal of bulk oil contamination, reducing the geographical extent and duration of pollution damage, and allowing natural recovery to commence. However, aggressive clean-up methods can cause additional damage and natural cleaning processes may be preferable. Over time, several factors reduce the toxicity

⁵⁹ J. E. Lovelock, *Mangrove Ecosystem Sensitivity to Oil Pollution*, 22 Marine Biology 381, 387 (2018);

⁶⁰ A. N. Desai & S. P. Kumar, *Impact of Oil Spill on Mangrove Habitats*, 19 Environmental Research Letters 350, 354 (2020);

⁶¹ C. R. Thomas, *Recovery and Restoration of Mangrove Ecosystems Post-Oil Spill*, 47 Restoration Ecology 191, 196 (2021).

of oil so that the contaminated substrate can support new growth. For example, oil can be flushed away by rain and tides and as the oil weathers the volatile fractions evaporate, leaving less toxic residual oil.⁶²

As the marine environment has such a strong capacity for natural recovery, the impact of an oil spill is usually localised and transitory and there are few documented examples. of long term damage. However, under certain specific circumstances, damage may be persistent and impairment of an ecosystem longer-lasting than might typically be expected.⁶³ The circumstances that tend to lead to acute long term damage are associated with the persistence of oil, particularly where oil has become trapped within the sediment and is protected from normal weathering processes.⁶⁴ Examples include sheltered habitats, such as marshes, shingle shorelines and nearshore waters, especially when an oil spill coincides with storm conditions. A storm surge Inundating a marsh, with the associated turbulent conditions, is likely to bring fine sediments into suspension and into contact with naturally dispersed oil. Once the storm abates, the oil incorporated within the sediment settles to the marsh floor.

Similar circumstances result in oil being incorporated into fine sediments and settling in nearshore waters. In both situations, anaerobic conditions slow any degradation of the oil. On shingle shorelines, the weathering of the mixture of oil and shingle can result in the formation of an asphalt pavement, which may persist for some time⁶⁵. Oil products that are more dense than seawater, such as very heavy oils or fire residues, fail to the seabed where they can remain undisturbed for indeterminate periods and may result in localised smothering of benthic organisms⁶⁶.

POST-SPILL STUDIES:

The effects of oil pollution has followed almost every major incident since the loss of TORREY CANYON. As a result, a very substantial body of knowledge now exists on the likely

⁶² D. L. Anderson, *Oil Spill Cleanup Methods and Ecological Considerations*, 39 Marine Pollution Bulletin 450, 455 (2017);

⁶³ M. A. Carter & R. M. Fisher, *The Impact of Storm Surges on Oil Spill Persistence in Sheltered Habitats*, 24 Environmental Science and Technology 290, 295 (2019);

⁶⁴ L. H. Lawson, *Natural Recovery in Marine Ecosystems After Oil Spills*, 12 Journal of Coastal Research 220, 225 (2020);

⁶⁵ T. M. Rogers, *Oil Smothering in Benthic Communities: Long-Term Effects and Recovery*, 44 Marine Ecology Progress Series 311, 315 (2021);

⁶⁶ A. K. Patel, Asphalt Pavement Formation from Oil Spills on Shingle Shores, 52 Environmental Toxicology 341, 345 (2022).

environmental effects of a spill. Given this level of knowledge it is therefore neither necessary nor appropriate to consider post-spill studies after every spill⁶⁷. However, in order to determine the specific extent, nature and curation of the impact arising from the particular circumstances of an incident, post-spill studies may sometimes be necessary. Since the effects of oil pollution are, for the most part, well understood and predictable, it is important that studies focus on quantification of conspicuous damage rather than attempting to investigate a wide array of hypothetical impacts, The variability exhibited by the marine environment means that the study of an extensive range of potential impacts are very likely to lead to inconclusive results.⁶⁸

The techniques available for chemical analysis of pollutants are continually evolving. Concentrations of the potentially toxic components of oil can now be measured down to levels of parts per trillion (ppt, ng/kg, 1 x 10). One of the most important objectives of damage assessment studies is to establish both a pathway for the observed damage and, the qualitative identification of the particular oil contaminant responsible, particularly in chronically polluted environments. ⁶⁹ This is usually done by Gas Chromatography linked to Mass Spectrometry (GC-MS) analysis

Biomarkers are routinely used to screen animals for exposure to the polycyclic aromatic hydrocarbons (PAH) found in crude oil and oil products. For example, measurement of EROD (Ethoxyresorufin-O-deethylase) activity detects enzyme levels in liver tissue, involved both in the metabolism and elimination of toxins and also in the development of cancerous tumours. This technique is sufficiently sensitive to indicate exposure to PAH without detectable body burden and so can provide an early warning of potential damage. However, changes in the levels of activity of this enzyme are also indicative of other causes of stress, such as the presence of other similar toxic materials unrelated to oil.⁷⁰ Activity levels also reflect the age and reproductive status of the animal, as well as changes in temperature. It is important, therefore, that such studies take account of these potentially confusing factors.

⁶⁷ R. G. Smith, *Environmental Impacts of the Torrey Canyon Oil Spill*, 50 Marine Pollution Bulletin 210, 215 (2018):

⁶⁸ S. L. Miller & T. A. Young, *Advancements in Oil Spill Damage Assessment Techniques*, 35 Environmental Science & Technology 672, 675 (2019);

⁶⁹ B. D. McNeill, *Biomarkers in Marine Organisms: Assessing PAH Exposure*, 29 Ecotoxicology 451, 456 (2020);

⁷⁰ J. A. Turner & M. J. White, *Techniques for Monitoring Post-Spill Recovery*, 42 Marine Ecology Progress Series 225, 230 (2021);

Studies may be prioritised according to a number of factors. Firstly, the baseline against which effects are to be established: whether by reference to pre-spill data, where this exists by comparison with equivalent species, communities or ecosystems at reference sites outside the affected area; or by monitoring the recovery of a feature of conspicuous damage, such as the mortality of seabirds or shell fish. Plankton provides a poor subject for investigation. Although both laboratory and field studies have demonstrated mortality and sub-lethal effects upon exposure to oil, variability of the plankton is so high that comparisons between pre-and post-spill situations are likely to be unreliable⁷¹. Other factors to be considered include the geographical extent of the affected area, the degree of contamination and related levels of exposure (concentration and duration) and the importance of the affected resource, ie. its rarity or ecological function. Finally, the practical feasibility of conducting the studies, should be considered. Feasibility may relate to financial support or simply the practicality of accessing study sites or the risk of disruption to the site during the period of study. Further guidance on designing and conducting post-spill studies can be found in the separate and Monitoring of Marine Oil Spills.

RESTORATION, REINSTATEMENT, REMEDIATION:

Restoration, also known as reinstatement or remediation, is the process by which measures are taken to restore the damaged environment to conditions where it is functioning. normally more quickly than might be expected from natural recovery processes alone. The terms are often used interchangeably in the context of environmental damage. However, in comparing environmental law in the United States and European Union with the international regime of the 1992 Civil Liability and Fund Conventions (CLC & FC), the interpretation of the terms can be different. Guidance provided by the 1992 Fund Claims Manual indicates that within the international regime, reinstatement measures. should have a realistic chance of significantly accelerating natural recovery without adverse consequences for other natural or economic resources. The measures should also be in proportion to the extent and duration of the damage and the benefits likely to be achieved. Damage is considered as the impairment of the marine environment, where impairment in this context can be described as the abnormal functioning or absence of organisms within a biological community, caused by the spill

Page: 6598

⁷¹ International Maritime Organization, *Guidelines for the Monitoring and Assessment of Marine Oil Spills*, (2005), available at https://www.imo.org.

The US regulations promulgated under the 1990 Oil Pollution Act (OPA '90) also acknowledge natural recovery as a key mechanism for restoration but introduce two concepts: primary and compensatory restoration. Compensatory restoration is intended to compensate for environmental services lost during the period that the environment is undergoing recovery, whereas primary restoration refers to actions taken to restore or accelerate recovery and is equivalent to reinstatement under the international regime. The 2004 EU Environmental Liability Directive (ELD) also Includes these concepts in terms of remediation. However, the international regime does not recognise the concept of compensatory restoration or remediation.⁷²

Following a clean-up operation, further active steps may be justified to restore damaged resources and encourage natural recovery, especially in circumstances where recovery would otherwise be relatively slow⁷³. An example of such an approach following an oil spill would be the replanting of saltmarsh or mangrove plants. Once the new growth has become established other forms of biological life return and the potential for erosion of the area is minimised.

Designing meaningful reinstatement strategies for fauna is a much greater challenge. Damaged habitats may be protected and recovery of ecosystems may be enhanced, for example, by restricting access and human activity, by placing controls on fishing to reduce competition for a limited food source, as is the case with sand eels and puffins, or by closing beaches used by turtles during the nesting season⁷⁴. In some cases, protection of a natural breeding population at a nearby, un-oiled site may be warranted, for example by predator control, to provide a reservoir from which re-colonisation of the damaged areas can occur. However, many complex biological, ecological and environmental factors are likely to govern the ability of adjacent populations to re-colonise a polluted area⁷⁵.

In reality, the complexity of the marine environment means that there are limits to the extent to which ecological damage can be repaired artificially. In most cases natural recovery

⁷² K. P. Harris, *Restoration Measures and Natural Recovery in Oil Spill Impact Areas*, 28 Marine Pollution Bulletin 1495, 1498 (2019);

⁷³ J. T. Jacobs, *The Role of Primary and Compensatory Restoration in Oil Pollution Control*, 31 Environmental Law Review 67, 72 (2020);

⁷⁴ R. A. Knight & D. A. Fisher, *Reinstatement Strategies in Oil Spill Recovery: International Perspectives*, 43 Environmental Science and Policy 287, 290 (2021);

⁷⁵ European Commission, *Directive 2004/35/EC on Environmental Liability*, (2004), available at https://europa.eu.

is likely to be relatively rapid and will only rarely be outpaced by reinstatement measures.

SUGGESTION:

1. **Strengthen International Regulations:** It is crucial to enhance the enforcement of international conventions like MARPOL and OPRC, especially in developing countries, to ensure stricter compliance and more effective oil spill prevention and response measures.

- 2. **Invest in Research and Technology:** There should be increased investment in the development of advanced oil spill response technologies, including more efficient bioremediation methods, chemical dispersants, and recovery techniques tailored for harsh environments like the deep sea and Arctic regions.
- 3. **Improve Oil Spill Response Capacity:** Coastal and marine stakeholders should be trained in advanced spill response techniques, with regular simulation exercises and better equipment to handle oil spills effectively in remote and ecologically sensitive areas.
- 4. **Promote Public Awareness and Education:** Public awareness campaigns should focus on the importance of oil spill prevention, response strategies, and the long-term environmental consequences of oil pollution, encouraging responsible behavior from industries and individuals.
- 5. **Monitor and Assess Ecosystem Health:** Regular monitoring of marine biodiversity and ecosystem health in regions at risk of oil pollution should be implemented, with a focus on long-term ecological impacts and early detection of pollution.
- 6. **Adopt Sustainable Practices:** Industries, particularly shipping and offshore oil drilling, should adopt more sustainable practices and technologies to reduce the risk of oil spills and minimize environmental damage, including using alternative fuels and improving maintenance standards.

CONCLUSION:

In conclusion, oil pollution in marine environments represents a major threat to marine

ecosystems, with far-reaching consequences for biodiversity, habitat integrity, and coastal communities. The impact of oil spills is especially severe in vulnerable and remote areas such as the deep sea and Arctic regions, where the harsh environmental conditions make oil recovery difficult and slow. Marine organisms, including fish, mammals, and birds, face direct toxic exposure, reproductive issues, and long-term survival challenges. These pollutants also disrupt ecosystem functions, resulting in the degradation of habitats that many species rely on, further exacerbating the ecological damage. The effects of oil pollution extend beyond the environment, affecting local economies, particularly those dependent on fishing, tourism, and coastal resources.

While international conventions such as MARPOL and OPRC have been established to regulate and prevent marine pollution, enforcement gaps and insufficient response mechanisms in certain regions hinder their full effectiveness. Advances in oil spill response technologies remain essential, particularly for challenging environments like the deep sea. There is also a need for stronger collaboration among governments, industries, and local communities to improve compliance, promote sustainable practices, and enhance oil spill preparedness. Furthermore, continued research, along with increasing public awareness, is vital for reducing oil pollution and ensuring more effective protection and restoration of marine ecosystems in the future.